
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Journal of Computational and Applied Mathematics 259 (2014) 129–137

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Numerical approximation of a two-dimensional parabolic
time-dependent problem containing a delta function✩

Dejan R. Bojović a,∗, Bratislav V. Sredojević a, Boško S. Jovanović b

a University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia
b University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia

a r t i c l e i n f o

Article history:
Received 17 September 2012
Received in revised form 4 April 2013

MSC:
65M12
65M15

Keywords:
Interface problem
Convergence
Sobolev norm

a b s t r a c t

The convergence of a difference scheme for a two-dimensional initial-boundary value
problem for the heat equationwith concentrated capacity and time-dependent coefficients
of the space derivatives is considered. An estimate of the rate of convergence in a special
discrete W 2,1

2 Sobolev norm, compatible with the smoothness of the coefficients and the
solution, is proved.
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1. Introduction

The finite-difference method is one of the basic tools for the numerical solution of partial differential equations. In the
case of problems with discontinuous coefficients and concentrated factors (Dirac delta functions, free boundaries, etc.), the
solution has weak global regularity, and it is impossible to establish convergence of finite-difference schemes using the
classical Taylor series expansion. Often, the Bramble–Hilbert lemma takes the role of the Taylor formula for functions from
the Sobolev spaces [1–3].

Following Lazarov et al. [3], a convergence rate estimate of the form

∥u − v∥W k
2,h

≤ Chs−k
∥u∥W s

2
, s > k,

is called compatiblewith the smoothness (regularity) of the solution u of the boundary value problem. Here, v is the solution
of the discrete problem, h is the spatial mesh step,W s

2 andW k
2,h are Sobolev spaces of functions with continuous and discrete

argument, respectively, and C is a constant which does not depend on u and h. For parabolic problems, typical estimates are
of the form

∥u − v∥W k,k/2
2,hτ

≤ C(h +
√
τ)s−k

∥u∥W s,s/2
2
, s > k,

where τ is the time step. In the case of equations with variable coefficients, the constant C in the error bounds depends on
the norms of the coefficients (see, for example, [2,4,5]).
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One interesting class of parabolic problems models processes in heat-conducting media with concentrated capacity in
which the heat capacity coefficient contains a Dirac delta function, or, equivalently, the jump of the heat flow in the singular
point is proportional to the time derivative of the temperature [6]. Such problems are nonstandard, and classical tools of the
theory of finite-difference schemes are difficult to apply to their convergence analysis.

In the present paper, a finite-difference scheme, approximating the two-dimensional initial-boundary value problem
for the heat equation with concentrated capacity and time-dependent coefficients is derived. A special Sobolev norm
(corresponding to the norm W 2,1

2 for a classical heat-conduction problem) is constructed. In this norm, a convergence rate
estimate, compatible with the smoothness of the solution of the boundary value problem, is obtained.

Note that the convergence to classical solutions is studied in [7,8]. A one-dimensional parabolic problem with weak
solution is studied in [9–12], and a two-dimensional parabolic problem with variable coefficients (that are independent of
time) is considered in [13,12].

2. Preliminary results

Let H be a real separable Hilbert space endowed with inner product (·, ·) and norm ∥ · ∥, and let S be an unbounded
selfadjoint positive definite linear operator, with domain D(S) dense in H . It is easy to see that the product (u, v)S =

(Su, v) (u, v ∈ D(S)) satisfies the axioms of an inner product. The closure of D(S) in the norm ∥u∥S = (u, u)1/2S is a Hilbert
space HS ⊂ H . The inner product (u, v) continuously extends to H∗

S × HS , where H∗

S = HS−1 is the dual space for HS . The
spaces HS,H and HS−1 form a Gelfand triple HS ⊂ H ⊂ HS−1 , with continuous imbeddings. The operator S extends to the
map S : HS → H∗

S . There exists an unbounded selfadjoint positive definite linear operator S1/2, such that D(S1/2) = HS

and (u, v)S = (Su, v) = (S1/2u, S1/2v). We also define the Sobolev spaces W s
2(a, b;H) and W 0

2 (a, b;H) = L2(a, b;H) of the
functions u = u(t)mapping the interval (a, b) ⊂ R into H (see [14,15]).

Let A and B be unbounded selfadjoint positive definite linear operators, A = A(t), B ≠ B(t), in the Hilbert spaceH , in gen-
eral noncommuting, with D(A) dense in H and HA ⊂ HB. We consider the following abstract Cauchy problem (see [16,15]):

B
du
dt

+ Au = f (t), 0 < t < T ; u(0) = u0, (1)

where f (t) and u0 are given, and u(t) is an unknown function with values in H . Let us also assume that A0 ≤ A(t) ≤ cA0,
where c = const > 1, and A0 is a constant selfadjoint positive definite linear operator in H . We also assume that A(t) is a
nonincreasing operator in the variable t:

dA(t)
dt

u, u


≤ 0, ∀u ∈ H. (2)

The following proposition holds.

Lemma 1. The solution of problem (1) satisfies the a priori estimate T

0


∥Au(t)∥2

B−1 +

du(t)dt

2
B


dt ≤ C


∥u0∥

2
A0 +

 T

0
∥f (t)∥2

B−1 dt

, (3)

provided that u0 ∈ HA0 and f ∈ L2(0, T ;HB−1).

Proof. It follows from the theory of abstract parabolic initial value problems that, for u0 ∈ HB and f ∈ L2(0, T ;HA−1
0
),

problem (1) has a unique solution u ∈ L2(0, T ;HA0) with du/dt ∈ L2(0, T ;HBA−1
0 B). We take the inner product of (1) with

2du/dt , and estimate the right-hand side by the Cauchy–Schwarz inequality:

2
dudt

2
B
+ 2


Au,

du
dt


= 2


f ,

du
dt


≤

dudt
2
B
+ ∥f ∥2

B−1 .

By (2), this implies that

d
dt
(∥u∥2

A) ≤ 2

Au,

du
dt


, ∀u ∈ H.

Further, we have

2
dudt

2
B
+

d
dt
(∥u∥2

A) ≤

dudt
2
B
+ ∥f ∥2

B−1 .

Integration with respect to t gives T

0

dudt
2
B
dt + ∥u(T )∥2

A(T ) ≤ ∥u0∥
2
A(0) +

 T

0
∥f (t)∥2

B−1 dt. (4)
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We also take the inner product of (1) with 2B−1Au, and obtain

2∥Au∥2
B−1 +

d
dt
(∥u∥2

A) ≤ ∥Au∥2
B−1 + ∥f ∥2

B−1 .

Again, integration with respect to t gives T

0
∥Au(t)∥2

B−1 dt + ∥u(T )∥2
A(T ) ≤ ∥u0∥

2
A(0) +

 T

0
∥f (t)∥2

B−1 dt. (5)

From (4) and (5), we deduce that a priori estimate (3) is valid. �

Analogous results hold for operator-difference schemes. Let Hh be a finite-dimensional real Hilbert space with inner
product (·, ·)h and norm ∥ · ∥h. Let Ah = Ah(t) and Bh ≠ Bh(t) be selfadjoint positive linear operators defined on Hh, in the
general (noncommuting) case. By HSh , where Sh = S∗

h > 0, we denote the space with inner product (y, v)Sh = (Shy, v)h and
norm ∥y∥Sh = (Shy, y)

1/2
h .

Let ωτ be a uniform mesh on (0, T ) with stepsize τ = T/m, ω−
τ = ωτ ∪ {0}, ω+

τ = ωτ ∪ {T }, and ωτ = ωτ ∪ {0, T }.
Further, we shall use standard notation from the theory of difference schemes [17,4]. In particular, we set

vt = vt(t) =
v(t)− v(t − τ)

τ
, vt = vt(t) =

v(t + τ)− v(t)
τ

= vt(t + τ).

We will consider the simplest implicit operator-difference scheme:

Bhvt + Ahv = ϕ(t), t ∈ ω+

τ ; v(0) = v0, (6)

where v0 is a given element ofHh, ϕ(t) is known, and v(t) is an unknownmesh function with values inHh. Analogously as in
the previous case, we assume that A0h ≤ Ah(t) ≤ cA0h, where c = const > 1 and A0h is a constant selfadjoint positive linear
operator in Hh. Also, we assume that ((Ah(t + τ)− Ah(t))u, u) ≤ 0. The following analog of Lemma 1 is true (comp. [2,18]).

Lemma 2. For the solution of problem (6), the following estimate holds:

τ

t∈ωτ

′

∥Ahv(t)∥2
B−1
h

+ τ

t∈ω+

τ

∥vt(t)∥
2
Bh ≤ C


∥v0∥

2
A0h + τ∥Ahv0∥

2
B−1
h

+ τ

t∈ω+

τ

∥ϕ(t)∥2
B−1
h


,

where we have denoted
t∈ωτ

′

w(t) =
w(0)
2

+


t∈ωτ

w(t)+
w(T )
2

.

We also need the following result (see [19]).

Lemma 3. For f ∈ W 1
p (0, 1), p > 1 and ε ∈ (0, 1), the following estimate holds:

∥f ∥Lp(0,ε) ≤ Cε1/p∥f ∥W1
p (0,1)

.

3. Differential problem and its approximation

Let us consider the two-dimensional initial boundary value problem for the heat equation in the presence of a concen-
trated capacity on the line x2 = ξ, 0 < ξ < 1:

(1 + Kδ(x2 − ξ))
∂u
∂t

−

2
i=1

∂

∂xi


ai(x, t)

∂u
∂xi


= f , on Q ,

u = 0, on ∂Ω × (0, T ), (7)
u(x, 0) = u0(x), onΩ,

where δ(x) is the Dirac delta function, K > 0, andΩ = (0, 1)2, Q = Ω × (0, T ).
Let us denoteΩ1 = (0, 1)× (0, ξ), Ω2 = (0, 1)× (ξ , 1), Q1 = Ω1 × (0, T ), Q2 = Ω2 × (0, T ) andΣ = {(x1, ξ)|x1 ∈

(0, 1)}. In what follows, we shall assume that

ai ∈ W 3,3/2
2 (Q1) ∩ W 3,3/2

2 (Q2), f ∈ W 2,1
2 (Q ),

u0 ∈ W 3
2 (Ω1) ∩ W 3

2 (Ω2)∩
◦

W 1
2 (Ω)

(8)

and

u ∈ W 4,2
2 (Q1) ∩ W 4,2

2 (Q2) ∩ W 2
2 (0, T ; L2(Σ)) ∩ W 1

2 (0, T ;W 2
2 (Σ)). (9)
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Formula (8) expresses the minimal smoothness requirements on the data under which solution u of (7) may belong to the
function space stated in (9) (comp. [20]). To guarantee that such u really exists, we also need some additional compatibility
conditions at the corners ofΩ . For specific details, the reader may consult the book by Grisvard [21]. We also assume that
the coefficients ai(x, t) are nonincreasing functions in the variable t and that 0 < c1 ≤ ai(x, t) ≤ c2.

Let ω̄h be a uniform mesh with step size h in Ω̄, ωh = ω̄h ∩ Ω, ω1h = ω̄h ∩ ([0, 1) × (0, 1)), ω2h = ω̄h ∩ ((0, 1) ×

[0, 1)), γh = ω̄h ∩ ∂Ω, σh = ωh ∩ Σ . Suppose that ξ is a rational number. Then one can choose the step h so that σh ≠ ∅.
Also, we assume that the condition c1h2

≤ τ ≤ c2h2 is satisfied. Define the first divided differences in the usual way:

vx̄i(x, t) =
v − v−i

h
, vxi(x, t) =

v+i
− v

h
,

where v±i(x, t) = v(x ± eih, t), e1 = (1, 0), e2 = (0, 1). Problem (7) can be approximated on the mesh Q hτ = ω̄h × ω̄τ by
the following difference scheme with averaged right-hand side:

(1 + Kδh(x2 − ξ))vt̄ + Lhv = T 2
1 T

2
2 T

−

t f , on Qhτ , (10)

v = 0, on γh × ω+

τ , v(x, 0) = u0(x), on ωh,

where Lhv = −
1
2

2
i=1((aivxi)x̄i + (aivx̄i)xi),

δh(x2 − ξ) =


0, x ∉ σh
1/h, x ∈ σh

is a discrete Dirac function, and T 2
1 , T

2
2 , T

−

t are Steklov averaging operators defined as follows:

T1f (x1, x2) = T±

1 f (x1 ∓ h/2, x2) =
1
h

 x1+h/2

x1−h/2
f (x′

1, x2)dx
′

1,

T2f (x1, x2) = T±

2 f (x1, x2 ∓ h/2) =
1
h

 x2+h/2

x2−h/2
f (x1, x′

2)dx
′

2,

T−

t f (x, t) = T+

t f (x, t − τ) =
1
τ

 t

t−τ
f (x, t ′)dt ′.

Note that these operators mutually commute and transform the derivatives to divided differences; for example,

T−

i
∂u
∂xi

= ux̄i , T+

i
∂u
∂xi

= uxi , T 2
i
∂2u
∂x2i

= uxi x̄i , T−

t
∂u
∂t

= ut̄ .

We also define

T 2−
2 f (x1, x2) =

1
h

 x2

x2−h


1 +

x′

2 − x2
h


f (x1, x′

2)dx
′

2,

T 2+
2 f (x1, x2) =

1
h

 x2+h

x2


1 −

x′

2 − x2
h


f (x1, x′

2)dx
′

2.

We define the following inner products and norms:

(v, u)L2(ωh) = h2

x∈ωh

v(x)u(x), ∥v∥L2(ωh) = (v, v)
1/2
L2(ωh)

,

(v, u)L2(ωih) = h2

x∈ωih

v(x)u(x), ∥v∥L2(ωih) = (v, v)
1/2
L2(ωih)

.

Further, we denote Bhv = (1 + Kδh(x2 − ξ))v, and define the following norms:

∥v∥2
Bh = ∥v∥2

L2(ωh)
+ Kh


x∈σh

v2(x),

∥v∥2
B−1
h

= h2


x∈wh\σh

v2(x)+
h3

K + h


x∈σh

v2(x),

∥v∥W2
2,h

=

2
i=1


∥vxi x̄i∥

2
B−1
h

+ ∥vxi∥
2
L2(ωih)


+ ∥v∥2

Bh .

Note that the norms ∥Lhv∥B−1
h

and ∥v∥W2
2,h

are equivalent. We also define the discrete W 2,1
2 norm by

∥v∥2W2,1
2 (Qhτ )

= τ

t∈ω̄τ

∥v(·, t)∥2W2
2,h

+ τ

t∈ω+

τ

∥vt̄(·, t)∥2
Bh .



Author's personal copy

D.R. Bojović et al. / Journal of Computational and Applied Mathematics 259 (2014) 129–137 133

4. Convergence of the difference scheme

In this section, we shall prove the convergence of difference scheme (10) in the W 2,1
2 (Qhτ ) norm. The following proposi-

tion holds.

Theorem 1. The solution of difference scheme (10) converges in W 2,1
2 (Qhτ ) to the solution of differential problem (7), and the

following estimate is valid:

∥u − v∥W2,1
2 (Qhτ )

≤ Ch2

max

i
∥ai∥W3, 3/2

2 (Q1)
+ max

i
∥ai∥W3, 3/2

2 (Q2)
+ 1


×


∥u∥W4,2

2 (Q1)
+ ∥u∥W4,2

2 (Q2)
+ ∥u∥W1

2 (0,T ;W2
2 (Σ))


. (11)

Proof. The error z = u − v satisfies the finite-difference scheme

(1 + Kδh(x2 − ξ))zt̄ + Lhz = ϕ + ψ, on Qhτ , (12)
z = 0, on γh × ω+

τ , z(x, 0) = 0, on ωh,

where

ϕ = ut̄ − T 2
1 T

2
2 T

−

t
∂u
∂t

+ Kδh(x2 − ξ)(ut̄ − T 2
1 ut̄),

ψ = ψ1 + ψ2, and

ψi = T 2
1 T

2
2 T

−

t
∂

∂xi


ai
∂u
∂xi


−

1
2
((aiuxi)x̄i + (aiux̄i)xi), i = 1, 2.

Using Lemma 2, we directly obtain the following a priori estimate for the solution of difference scheme (12):

∥z∥W2,1
2 (Qhτ )

≤ C

τ 
t∈w+

τ

(∥ϕ(·, t)∥2
B−1
h

+ ∥ψ(·, t)∥2
B−1
h
)

1/2

. (13)

Therefore, in order to estimate the rate of convergence of difference scheme (10), it is sufficient to estimate the right-hand
side of inequality (13).

The estimate of the term ϕ is proved in [12]:τ 
τ∈ω+

τ

∥ϕ(·, t)∥2
B−1
h

1/2

≤ Ch2(∥u∥W4,2
2 (Q1)

+ ∥u∥W4,2
2 (Q2)

+ ∥u∥W1
2 (0,T ;W2

2 (Σ))
). (14)

Let us estimate the term ψ . At the point x ∉ σh, we have (see [5])h2τ

t∈ω+

τ


x∈ωh\σh

|ψi(x, t)|2

1/2

≤ Ch2


∥ai∥W3,3/2

2 (Q1)
∥u∥W4,2

2 (Q1)
+ ∥ai∥W3,3/2

2 (Q2)
∥u∥W4,2

2 (Q2)


. (15)

At the point x ∈ σh, we decompose ψ1 = ψ+

1 + ψ−

1 , ψ
±

1 =
7

k=1 ψ
±

1k, where

ψ±

11 = T 2
1 T

2±
2 T−

t


a1
∂2u
∂x21


− 2


T 2
1 T

2±
2 T−

t a1


T 2
1 T

2±
2 T−

t
∂2u
∂x21


,

ψ±

12 =


2T 2

1 T
2±
2 T−

t a1 − a1


T 2
1 T

2±
2 T−

t
∂2u
∂x21


,

ψ±

13 =
1
2
a1


2T 2

1 T
2±
2 T−

t
∂2u
∂x21

− ux1 x̄1


,

ψ±

14 = T 2
1 T

2±
2 T−

t


∂a1
∂x1

∂u
∂x1


− 2


T 2
1 T

2±
2 T−

t
∂a1
∂x1


T 2
1 T

2±
2 T−

t
∂u
∂x1


,
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ψ±

15 =


2T 2

1 T
2±
2 T−

t
∂a1
∂x1

−
1
2


a1,x1 + a1,x̄1


T 2
1 T

2±
2 T−

t
∂u
∂x1


,

ψ±

16 =
1
4


a1,x1 + a1,x̄1


2T 2

1 T
2±
2 T−

t
∂u
∂x1

−
1
2


ux̄1 + ux1


,

ψ±

17 =
1
8


a1,x1 − a1,x̄1


ux̄1 − ux1


.

The term ψ+

11 is a bounded bilinear functional of the argument (a1, u) ∈ W 1, 1/2
q (e) × W 3, 3/2

2q/(q−2)(e), e = (x1 − h, x1 + h) ×

(x2, x2 + h)× (t − τ , t), q > 2. Further, ψ+

11 = 0 whenever a1 is a constant or u is a polynomial of degree 2 in x1 or x2 and
a polynomial of degree 1 in t . Applying the Bramble–Hilbert lemma [1], we get

|ψ+

11(x, t)| ≤ C |a1|W1, 1/2
q (e)|u|W3, 3/2

2q/(q−2)(e)
.

Summing over the mesh σh, and using the imbeddingsW 3, 3/2
2 ⊂ W 1, 1/2

q , W 4, 2
2 ⊂ W 3, 3/2

2q/(q−2), we have τh3

K + h


t∈ω+

τ


x∈σh

|ψ+

11(x, t)|
2

1/2

≤ Ch2
∥a1∥W3, 3/2

2 (Q2)
∥u∥W4,2

2 (Q2)
. (16)

The term ψ+

12 is a bounded bilinear functional of the argument (a1, u) ∈ W 1, 1/2
q (e)× W 2, 1

2q/(q−2)(e), q > 2. Further,ψ+

12 = 0
whenever a1 is a constant or u is a polynomial of degree 1 in x1 or x2. Applying the Bramble–Hilbert lemma, we get the
following estimate:

|ψ+

12(x, t)| ≤
C
h
|a1|W1, 1/2

q (e)|u|W2, 1
2q/(q−2)(e)

.

After summation, using Lemma 3 and the imbeddingsW 3, 3/2
2 ⊂ W 2, 1

q , W 4, 2
2 ⊂ W 3, 3/2

2q/(q−2), we obtain τh3

K + h


t∈ω+

τ


x∈σh

|ψ+

12(x, t)|
2

1/2

≤ Ch3/2
∥a1∥W1, 1/2

q (Q h
2 )

∥u∥W2, 1
2q/(q−2)(Q

h
2 )

≤ Ch2
∥a1∥W2, 1

q (Q2)
∥u∥2

W3, 3/2
2q/(q−2)(Q2)

≤ Ch2
∥a1∥2

W3, 3/2
2 (Q2)

∥u∥2
W4, 2

2 (Q2)
, (17)

where Q h
2 = (0, 1)× (ξ , ξ + h)× (0, T ).

The termψ+

13 is a bounded bilinear functional of the argument (a1, u) ∈ C(Q2)× W 3, 3/2
2 (e). Further,ψ+

13 = 0 whenever
u is a polynomial of degree 2 in x1 or x2 and a polynomial of degree 1 in t . Applying the Bramble–Hilbert lemma, we get the
following estimate:

|ψ+

13(x, t)| ≤
C
h
∥a1∥C(Q2)

|u|W3, 3/2
2 (e).

After summation, applying Lemma 3 and the imbeddingW 3, 3/2
2 ⊂ C, we have τh3

K + h


t∈ω+

τ


x∈σh

|ψ+

13(x, t)|
2

1/2

≤ Ch3/2
∥a1∥C(Q 2)

∥u∥W3,3/2
2 (Q h

2 )

≤ Ch2
∥a1∥W3, 3/2

2 (Q2)
∥u∥W4,2

2 (Q2)
. (18)

The termψ+

14 is a bounded bilinear functional of the argument (a1, u) ∈ W 2, 1
q (e)×W 2, 1

2q/(q−2)(e), q > 2. Further,ψ+

14 = 0
whenever a1 is a polynomial of degree 1 in x1 or x2 or u is a polynomial of degree 1 in x1 or x2. Applying the Bramble–Hilbert
lemma, we get the following estimate:

|ψ+

14(x, t)| ≤ C |a1|W2, 1
q (e)|u|W2, 1

2q/(q−2)(e)
.
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After summation, applying Lemma 3 and the imbeddingsW 4, 2
2 ⊂ W 2,1

2q/(q−2) and W 3, 3/2
2 ⊂ W 2,1

q , we have τh3

K + h


t∈ω+

τ


x∈σh

|ψ+

14(x, t)|
2

1/2

≤ Ch2
∥a1∥W3, 3/2

2 (Q2)
∥u∥W4, 2

2 (Q2)
. (19)

The term ψ+

15 is a bounded bilinear functional of the argument (a1, ∂u/∂x1) ∈ W 2, 1
2 (e) × C(Q2). Further, ψ+

15 = 0
whenever a1 is a polynomial of degree 1 in x1 or x2. Applying the Bramble–Hilbert lemma, we get the following estimate:

|ψ+

15(x, t)| ≤
C
h
|a1|W2, 1

2 (e)

 ∂u∂x1


C(Q2)

.

After summation, applying Lemma 3 and the imbeddingW 3,3/2
2 ⊂ C, we have τh3

K + h


t∈ω+

τ


x∈σh

|ψ+

15(x, t)|
2

1/2

≤ Ch3/2
∥a1∥W2, 1

2 (Q h
2 )

 ∂u∂x1


C(Q2)

≤ Ch2
∥a1∥W3, 3/2

2 (Q2)
∥u∥W4, 2

2 (Q2)
. (20)

The term ψ+

16 is a bounded bilinear functional of the argument (a1, u) ∈ C(Q2)(e)× W 3,3/2
2 (e), q > 2. Further, ψ+

16 = 0
whenever u is a polynomial of degree 2 in x1 or x2 and a polynomial of degree 1 in t . Applying the Bramble–Hilbert lemma,
we get the following estimate:

|ψ+

16(x, t)| ≤
C
h
∥a1∥C(Q2)

|u|W3,3/2
2 (e).

After summation, applying Lemma 3 and the imbeddingW 3, 3/2
2 ⊂ C , we have τh3

K + h


t∈ω+

τ


x∈σh

|ψ+

16(x, t)|
2

1/2

≤ Ch3/2
∥a1∥C(Q2)

∥u∥W3,3/2
2 (Q h

2 )
(21)

≤ Ch2
∥a1∥W3, 3/2

2 (Q2)
∥u∥W4, 2

2 (Q2)
. (22)

The termψ+

17 is a bounded bilinear functional of the argument (a1, u) ∈ W 2, 1
q (e)×W 2, 1

2q/(q−2)(e), q > 2. Further,ψ+

17 = 0
whenever a1 is a polynomial of degree 1 in x1 or x2 or u is a polynomial of degree 1 in x1 or x2. Applying the Bramble–Hilbert
lemma, we get the following estimate:

|ψ+

17(x, t)| ≤ C |a1|W2, 1
q (e)|u|W2, 1

2q/(q−2)(e)
.

After summation, applying the imbeddingsW 4, 2
2 ⊂ W 2,1

2q/(q−2) andW 3, 3/2
2 ⊂ W 2,1

q , we have τh3

K + h


t∈ω+

τ


x∈σh

|ψ+

17(x, t)|
2

1/2

≤ Ch2
∥a1∥W3, 3/2

2 (Q2)
∥u∥W4, 2

2 (Q2)
. (23)

From (16)–(23), we have τh3

K + h


t∈ω+

τ


x∈σh

|ψ+

1 (x, t)|
2

1/2

≤ Ch2
∥a1∥W3, 3/2

2 (Q2)
∥u∥W4,2

2 (Q2)
. (24)

An analogous estimate holds for term ψ−

1 : τh3

K + h


t∈ω+

τ


x∈σh

|ψ−

1 (x, t)|
2

1/2

≤ Ch2
∥a1∥W3, 3/2

2 (Q1)
∥u∥W4,2

2 (Q1)
. (25)

From (15), (24) and (25), we haveτ 
τ∈ω+

τ

∥ψ1(·, t)∥2
B−1
h

1/2

≤ Ch2(∥a1∥W3, 3/2
2 (Q1)

∥u∥W4,2
2 (Q1)

+ ∥a1∥W3, 3/2
2 (Q2)

∥u∥W4,2
2 (Q2)

). (26)



Author's personal copy

136 D.R. Bojović et al. / Journal of Computational and Applied Mathematics 259 (2014) 129–137

Let us estimate the term ψ2, at the point x ∈ σh. We have that ψ2 = ηx̄2 , where

η = T 2
1 T

+

2 T−

t


a2
∂u
∂x2


−

1
2


a2 + a+2

2


ux2 .

The following elementary inequality is valid:

h2

K + h
ψ2

2 (x1, ξ , t) ≤ C(|η(x1, ξ , t)|2 + |η(x1, ξ − h, t)|2).

We decompose η = η1 + η2 + η3, where

η1 = T 2
1 T

+

2 T−

t


a2
∂u
∂x2


−


T 2
1 T

+

2 T−

t a2


T 2
1 T

+

2 T−

t
∂u
∂x2


,

η2 =


T 2
1 T

+

2 T−

t a2 −
1
2
(a2 + a+2

2 )


T 2
1 T

+

2 T−

t
∂u
∂x2


,

η3 =
1
2
(a2 + a+2

2 )


T 2
1 T

+

2 T−

t
∂u
∂x2

− ux2


.

The term η1 is a bounded bilinear functional of the argument (a2, u) ∈ W 1, 1/2
q (e)×W 2, 1

2q/(q−2)(e), q > 2. Further, η1 = 0
whenever a2 is a constant or u is a polynomial of degree 1 in x1 or x2. Applying the Bramble–Hilbert lemma, we get the
following estimate:

|η1(x, t)| ≤ C |a2|W1, 1/2
q (e)|u|W2, 1

2q/(q−2)(e)
.

After summation, applying Lemma 3 and the imbeddingsW 4, 2
2 ⊂ W 3, 3/2

2q/(q−2) and W 3, 3/2
2 ⊂ W 2, 1

q , we haveτh 
t∈ω+

τ


x∈σh

|η1(x, t)|2

1/2

≤ Ch3/2
∥a2∥W1, 1/2

q (Q h
2 )

∥u∥W2, 1
2q/(q−2)(Q

h
2 )

≤ Ch2
∥a2∥W2, 1

q (Q2)
∥u∥W3, 3/2

2q/(q−2)(Q2)

≤ Ch2
∥a2∥W3, 3/2

2 (Q2)
∥u∥W4, 2

2 (Q2)
. (27)

The term η2 is a bounded bilinear functional of the argument (a2, ∂u/∂x2) ∈ W 1, 1/2
2 (e)× C(Q 2). Further, η2 = 0 when-

ever a2 is a polynomial of degree 1 in x1 or x2. Applying the Bramble–Hilbert lemma, we get the following estimate:

|η2(x, t)| ≤ C |a2|W2,1
2 (e)

 ∂u∂x2


C(Q 2)

.

After summation, applying Lemma 3 and the imbeddingW 3,3/2
2 ⊂ C, we haveτh 

t∈ω+
τ


x∈σh

|η2(x, t)|2

1/2

≤ Ch3/2
∥a2∥W2,1

2 (Q h
2 )

 ∂u∂x2


C(Q 2)

≤ Ch2
∥a2∥W3, 3/2

2 (Q2)
∥u∥W4, 2

2 (Q2)
. (28)

The term η3 is a bounded bilinear functional of the argument (a2, u) ∈ C(Q 2)× W 3,3/2
2 (e). Further, η3 = 0 whenever u

is a polynomial of degree 2 in x1 or x2 and a polynomial of degree 1 in t . Applying the Bramble–Hilbert lemma, we get the
following estimate:

|η3(x, t)| ≤ C∥a2∥C(Q 2)
|u|W3,3/2

2 (e).

After summation, applying Lemma 3 and the imbeddingW 3, 3/2
2 ⊂ C, we haveτh 

t∈ω+
τ


x∈σh

|η3(x, t)|2

1/2

≤ Ch3/2
∥a2∥C(Q 2)

∥u∥W3,3/2
2 (Q h

2 )

≤ Ch2
∥a2∥W3, 3/2

2 (Q2)
∥u∥W4, 2

2 (Q2)
. (29)
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From (27)–(29), we haveτh 
t∈ω+

τ


x∈σh

|η(x1, ξ , t)|2

1/2

≤ Ch2
∥a2∥W3, 3/2

2 (Q2)
∥u∥W4,2

2 (Q2)
. (30)

An analogous estimate of the term η(x1, ξ − h, t) is valid:τh 
t∈ω+

τ


x∈σh

|η(x1, ξ − h, t)|2

1/2

≤ Ch2
∥a2∥W3, 3/2

2 (Q1)
∥u∥W4,2

2 (Q1)
. (31)

From (15), (30) and (31), we haveτ 
τ∈ω+

τ

∥ψ2(·, t)∥2
B−1
h

1/2

≤ Ch2(∥a2∥W3, 3/2
2 (Q1)

∥u∥W4,2
2 (Q1)

+ ∥a2∥W3, 3/2
2 (Q2)

∥u∥W4,2
2 (Q2)

). (32)

Finally, from (13), (14), (26) and (32), we get (11). �

Remark. The estimate (11) is compatible with the smoothness of the coefficients and the solution of differential problem
(7). Note that estimate (13) is not valid in the case of a time-dependent problem with mixed derivatives.
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